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ABSTRACT 

An equation of state is computed for a plasma of one flavour quarks interacting 
through some phenomenological potential, at zero temperature. Assuming that the 
confining potential is scalar and colour-independent, it is shown that the quarks 
undergo a first-order mass phase transition. In addition, due to the way screening 
is introduced, all the thermodynamic quantities computed are independent of the 
actual shape of the interquark potential. This equation of state is then generalarized 
to a several quark flavour plasma and applied to the study of the hadron-quark phase 
transition inside a neutron star. 
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I. INTRODUCTION 

Quark matter is expected to play an important rble in cosmology and in s&r+ 

physics. In cosmology, if a quark-hadron transition actually occurred in the early 

universe, it could have a number of interesting consequences. First, it could be at 

the origin of density inhomogeneities’@) (in our mind, this is probably the most 

important possible consequence because we do not know how to form galaxies, pre- 

cisely the spectrum of density fluctuations must usually be added by hand in scenarii 

of galaxy formation). This transition might also provide an explanation to the miss- 

ing mass problem, via the formation for instance of small black holes’) or strange 

nuggets ‘),-s). Finally, if the transition occurred out of equilibrium, gravitational 

wave could have been emitted during the collisions of hadronic bubbles’)~g)JO) (this 

might be of interest in the future, because sstrophysi~cists are trying to develop, 

in addition to conventional gamma-ray astronomy, ultraviolet astronomy, . . . . new 

fields like neutrinos sstronomy and gravitational wawes astronomy.) 

In astrophysics, quark matter might be present in a number of objects: neutron 

stars with a quark core, pure quark stars -we will talk more about these objects 

below- and strange quark stars -see A.Oliito in the same issue of this review. In 

addition, quark matter might be the clue to understanding a number of anomalous 

events which occurred in cosmic rays such as the Centaur0 events or the - still 

controversial - Cygnus X-~3 muon excess (see 11) ,4) and their followers). 

However, in all these possible applications of quark matter to cosmology and 

astrophysics, the main source of uncertainties is ow lack of knowledge of the ezact 

equation of state of the quark-gluon plasma. This can be best illustrated by recalling 

briefly the history of quark core stars and quark stars. 

The possibility that a quark core might exist in some type of stars, was first 
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suggested by Ivanenko k Kurdgelaidze’rl (1969). Then Itoh131 (1970) computed the 

maximum mass of quark stars, neglecling tot&y interactions between quarks. This 

mass, as in the perfect neutron gas of Oppenheimer & Volkoff’l (1939), ww very 

small: 10e3 Mo. (For comparison, neutron star masses are usually observationally 

found to be of order 1.4 Me.) The interactions between quarks were poorly known. 

A few years later, when the M.I.T. bag model was inventedi51, Brecher & 

Caporaso ( I61 1976) showed that, by making use of it, higher maximum masses 

could be obtained for quark core stars. However, when first order corrections in 

the strong coupling constant were included in the quark M.I.T. equation of state, 

as done by Baym & Chin”) (1976) and Chapline & Nauenbergr*l (1976), the den- 

sity at which the quark phase should appear was much higher than the maximum 

central density reachable by stable neutron stars. So without the possibility of a 

quark-hadron phase transition inside neutron stars, the possibility that quark core 

stars or quark stars might exist w&s well diminished. (However as discussed by 

Kislinger & Morleyr91 - both these papers made used of a high value of the coupling 

constant, obtained when fitting hadronic spectra. In addition, since the coupling 

constant was held fixed, the equation of state contained large logarithms involving 

the density). 

In parallel to this phenomenological approach, Collins & Perry”‘) (1975), demon- 

strated that asymptotic freedom which holds for large momentum transfers, also 

holds at high density, for exemple inside neutron stars. Keister & Kisslinger*‘) 

(1976), using a perfect gas equation of state, and Chapline & Nouenberg**l (1977), 

starting from an expression of the energy density computed to first order in the - 

density dependent- coupling constant, concluded again that the quark-hadron phase 

transition would occur at too large a density , so that the possibility of having a pure 

quark phase inside neutron stars could be ruled out. However, these calculations 
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were too crude for the first one and not completely self-consistent for the second 

one as discussed by Freedman & MC Lerr&nz31. In 1978, it wss shown independently 

by Kislinger & Morleyi and Freedman k MC Lerranz31 - and checked in a different 

approach by Baluni*‘l -that when an expansion of the quark matter energy in the 

density dependent coupling constant was done, the quark-hadron phase transition 

was predicted to occur at densities lower than the maximum central density for a 

stable neutron star. It WBS also noticed by Freedman & McLerran, that this result 

still hold if one added a vacuum constant to the equation of state - thus defining 

an improved M.I.T. bag, without divergent logarithms when a proper choice of the 

substraction point wss made. This wss checked by Fechner & Josszsl (1978), with 

and without vacuum constant, in the case of a first or a second order phase transi- 

tion between hadrons and quarks, and for several nuclear-matter equations of state. 

They also showed that in addition to quark core stars, stable (pure) quark stars 

could even exist. 

In addition to these studies, a number of other phenomenological approaches 

have been done. In a paper from 1977, Bowers & al.*sl, extrapolated the Walecka 

model*‘) of nuclear matter to quark matter, namely they assumed that quarks 

exchanged massive scalar and vector particles and treated them in the Hartree, 

or mean field approximation. They showed that for reasonable choices of their 

parameters, quark core stars might exist but that quark stars would not be stable. 

This model was m-interpreted by Alvarez & Hakim**) in the context of the SLAC 

bag model: the scalar field wss used to generate a first order phase transition from 

a state of massive particles to a state of particles of decreasing mass, the vector field 

wss identified with gluons -massive from the beginning while in the SLAC model 

they acquire a msss through the Higgs mechanism. This allowed them to give an 

estimate of the parameters in their model, and their concluded that a quark-hadron 
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phase transition within neutron stars was possible. Finally, starting simply from the 

QCD lagrangian with a HartreeFock approximation, Alvarezz9) computed another 

equation of state. He concluded -see also the paper by Alvarez & IbaneP)- that 

the quark-hadron phase transition would occur at a higher density than allowed in 

stable neutron stars and that pure quark stars could exist but would be instable. 

(In our mind, this equation of state always lies close to p=p/3 hence it is rather 

similar to that of Keister k Kisslinger and it should not come ss a surprise if the 

quark-hadron transition occurs at too high a density). 

So we have seen that the quark matter equation of state plays a crucial r6le 

when trying to draw conclusions on dense stellar objects. Because of the uncertain- 

ties in the parameters to be employed in both perturbation-based and M.I.T.-like 

equations of state, it is fruitful to investigate the consequences of other choices for 

the quark equation of state. In what follows, we will present a new way of deriving 

phenomenological quark matter equations of state (section 2), see how to apply this 

approach to the quark-hadron phase transition inside dense neutron stars (section 

3) and discuss the avantages and drawbacks of this method, as well as possible 

improvements (section 4). 

2. METHOD 

a. The effective Lagrangian and the approximation 

As a starting point, let us assume that the quarks interact via the following 

effective Lagrangian density 

L = $(z)(i B - m)+(z) - i/d3$(z)$(zlV(l z - z lM~M(~) (2-l) 

i.e. we treat the quarks as Dirac particles and their interactions are accounted for 

4 



by a phenomenological potential V. (The idea of describing the interactions between 

quarks by phenomenological interquark potentials such as those of potential models 

used to fit experimental data on quarkonia, wsa first suggested by Wagoner & 

Steigman311. It was later taken up by Olive 321 annd Boal, Schachter k Woloshyn”) 

to describe the quark-gluon plasma in the Thomas-Fermi approximation. Their 

type of equations of state wse applied to studies of the primordial quark-hadron 

phase transition by K~llman3’l and S&r- & Olive3’l.) 

From (2.1), one can derive the energy momentum tensor T,,“. On the other 

hand, one may assume that the medium is uniform and isotropic, in which case one 

also has 

T,w = (6 + P)U,A - pg,u (2.2) 

where p is the pressure and c is the energy density. Form (2.1) and (2.2) it follows 

that 
<Too> 

C= 
V = (27r)’ J ,Po70+2E+ nJ G<(p) 

< II*’ > 
P= J d% POTO - h-‘/3 - m 

3v = (2x)4 2 G= (~1 

(2.3~) 

(2.3b) 

So that all what is needed in order to calculate the equation of state, is the expression 

of G<(p) and this is what we now turn to. 

The (Dirac) equation of motion which follows from (2.1) is 

(i B - m)G(z,y) = 6’(z - y) - i/d3zG(z,z;y,z+)v(I z-z l)~z,=z, (2.4) 

where the notation Z+ means that z”+ is infinitesimally greater than zc. 

In order to solve (2.4), one has to specify what is the form of the interquark potential 

V and how to express the two-particle Green function in terms of known or calcu- 

lable quantities. First, we will assume the following structure for the interaction 

potential 

V(r) = v”(r)$)+ - V,(r)lb”l~’ (2.5) 
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In practice, one takes the vector term V, to be the one-gluon potential expected to 

be dominant at short distances and the scalar term VS to be the confining potential 

expected to be dominant at large distances r 

In addition to specifying the Lorentz structure of the potential, its colour struc- 

ture has to be determined. While it is normal to multiply the one-gluon exchange 

term by a factor of X(‘l.X(rl/4, no decisive theoretical or experimental argument 

can be put forward to decide what to do for the confining part. So in addition to 

assuming that the confining potential is scalar, we will assume simply that it does 

not depend on colour*. (Note that such assumptions are also made in the MIT and 

SLAC models.) So 

i 

V&) = V&)lyly 
V”(r) = Vo(r)X(1)X(2)/4 (2.6) 

Finally, the twoparticle Green function will be approximated by 

G(z,y;z,t) - Gh4G(y,t) 

(This in fact the Hartree approximation as will become clear later.) 

(2.7) 

Insertion of (2.7) into (2.4) then leads to an equation in terms of one-particle 

Green functions only 

[i ,Blol. - mlD1, + i J d’zG(z, z’)V(l 2 - z I)l.,=..]G(z, Y) = 6’(2 - Y)~DL (2.8) 

The Hartree potential is defined by the following matrix 

U, E -i J d3zG(z,z+)V(I z - .Z 1)~,=,, (2.9) 
‘Phcnomenologically, a scalar component Vs is necessary because in the non-relativistic expansion 

of the &the-Salpeter eqoation, the spin-orbit term has opposite sign for scalar or vector potentials, 
the right aign to get the observed ordering of the “Pi levels of charmoniom being that of scalar 
potentialaae). The confining potential is wually arrumed to be this realor component. Aa a matter 
of fact, one doea not know whether the confining potential does not have a more complicated 
structure. In reference 57 , we also studied the possibility that the confining potential has both e, 
scalar and a vector component. .In addition, potentials of the form (2.5) (i.e. without tensor, axial, 
etc, components) M the simplest ones leading to good theoretical predictions for quark&a. 

‘We discussed briefly other possibilities for the colour dependence in ref. 57 and 58 
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Using (2.5) and (2.6) in (2.9), one obtains 

u, - - 
/ d3zVc(l z-z I).Tr[-iG(r,++)1~1.].1~1.+/d3zVo(~ z-z I).Tr[-iG(z,~+)r,X.].r’X~ 

(2.10) 

The last term in this equation is in fact null at equilibrium because then the Green 

function is proportional to the unity matrix in colour space. So that 

u, = U,R.lnl, (2.11) 

where 

Uf SE - 
/ 

&[aV~(l z-z ])].Tr[-iG(z,z+)lnl,] 

Equation (2.8) may be written in momentum space as below 

~h-e~~]LG(~) = blc 
(2.12) 

mi = mi-U~ 

(mn is designated thereafter ss the effective mass). 

The problem of a given quark having two-body interactions with others has been 

replaced by that of a free quark in the external field (2.9). The effect of this field is 

to change the mass m into the effective mass ma. 

b. Finite Hartree equations 

(2.12) can be solved by using the methods of temperature-dependent 

field theory39) and we obtain the following expression for the quantity 

want to compute, the retarded propagator 

-iG(r,z+) = J &G’(p) 

quantum 

which we 

(2.13) 



The first two integrals represent the contribution of matter while the last one 

accounts for vacuum fluctuations -and gives rise to a divergence. However, owing to 

the fact that our approach is essentially phenomenological, these fluctuations should 

not show up; the matter part only should be used throughout the calculations (see 

reference 37). Inserting the matter part of (2.13) into the expression of Uf in 

(2.11) then leads to the following self-consistent equation for Uf as a function of 

the chemical potential, also denoted by /.z, at zero temperature: 

u,A = -/ aaVs(l 2 - z I)l.(e/oPF ~~--=& (2.14) 

where 

pF= I/- iffi>mh- 

l 0 otherwise 

This equation is rather similar to that of the scalar plasma studied by Kalman”‘) 

and Diaz-Alonso & Hakim”) or of the scalar part of the nuclear matter model 

developed by Walecka and Chin*‘) 

Uf=-$.{2&g+y$) 
I 

(2.15) 

The part of the ratio $ is played here by J d3zVc(\ z - z 1). 
, 

However contrarily to (2.15) expressions (2.14) may still contain infinities, since 

J cPrVc(l z - .z I) is infrared divergent, for instance in the case of a linear confining 

potential. But, as advocated by Kogut and Susskind’s), infinitely rising potentials 

are expected to be screened by the creation of quark-antiquark pairs. As a first 

approximation, one may suppose that there exist some screening length es ( to be 

determined from experiment), fixed whatever the value of fi is&hen 

rJF = - Jo’s dWc(r) 
or - / d3rVc(r) exp(-r/es) 
or etc (2.16) 
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according to the way screening occurs. 

However, one expects es to depend on p and it is possible to compute this depen- 

dence: Uf is an energy felt by a given quark, so that it should not exceed twice 

the Fermi energy CF = p, else pair creation would occur (one must use the Fermi 

energy as a threshold, and not the quark mass, because in dense matter pairs can 

only be created above the Fermi sea). Hence one has 

2~ = I - 1,‘” d3rVC(r) 
or - Jd%Vc(r) exp(-r/es) 
or etc 

x {61,Pp $xflq},u.~=+zr 

(2.17) 

In other words, the finite values of 1 d3rVc( I (z - z) I) is given by the following 

formula 
- I,‘” d3rVc (r) 
or - Jd%[aVc(r) exp(-r/es)] 
or etc (2.18) 

= css,” &&“u+*,. 

Eq. (2.18) hold for a given /A, whatever the value of Ut is, not just for f2~, and 

so (2.14) can be replaced by 

q? = (2.19) 

Note that in the equation (2.19), Vc has completely disappeared -because of the 

way screening was introduced- so the shape of the confining potential or the way 

it is dumped (i.e. is it exponentially dumped or does it stop sharply at a certain 

distance or etc) does not matter. Note also that only the minus sign is allowed in 

(2.9) is allowed, else the denominator would have pi = 0 and vanish, so the &rite 

value of J d3zVC(j (z - z) ]) is positive. 

c. Numerical results (for one flavour) 
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Equation (2.19) may be solved numerically. In order to get a first insight into 

the solution, let us sssume that the screening length -and so the finite value of 

J d3zVc(I (z - z) I) aa well- is constant. In figure la, we show the solution of the 

equation for the effective mass (2.16) for various positive values of J d3zVc(j (z-z) I) 

(multiplied by 3m*/nr for computational commodity, and labeled as I). In the 

general case (2.19), the curve for the effective mass is presented in figure lb. It 

is rather similar to la, except for the fact that, due to screening, it terminates 

abruptly. 

Once (2.19) is solved, the equation of state may be computed easily. By inserting 

the matter part of (2.13) into (2.3a-b), one gets at zerotemperature 

cq = 3 
/ ,” &lPa + ?=I 

The density of quarks minus antiquarks is simply given by 

(2.204 

In figure 2a, the pressure has been plotted as a function of the chemical potential: it 

shows that as the density increases a first-order phase trotition takes place. This 

transition corresponds to the passage of a state of massive quarks to a state of 

quarks of decreasing mass (dashed-dotted line in figure lb), as one would expect 

from perturbative QCD. In Fig. 2b, the energy per particle as a function of particle 

density is represented. At low density, it is smaller than m, so the quarks are in 

a collective bound state. Thii may be interpreted as the fact that the quark just 

start to go out of the hadrons. Thus the overall picture which is obtained is satis- 

fying to describe quark matter at low density (where confinement is expected) and 

medium density (where the quark mass should start to decrease), so we can apply 
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our method to neutron stars. 

3. APPLICATION TO NEUTRON STARS 

a. Generalization to several quark flavours 

In the case of several flavour quark matter, one should replace (2.4) which holds 

for one Bavour only, by 

(; p - mp) cP(z,y) = 6’(z - y) - i/ d3z c G’~‘(~,z;y,z+)V~(j z - z 1),.,=,, 
p’=u,d,.... 

(3.1) 

Then proceeding as for the one flavour case, it is easy to show that 

u,R = 2PL 

C; _. 9 u& . 

where 

PW,R,k) = 
&T@ if pr > rn$ 
0 otherwise 

In the above expressions, pn designates the smallest among the Fermi energies of 

the various quark flavours; pairs of this flavour are created preferably to screen the 

interquark potential. 

It can be seen that the Hartree field Uf is the same whatever the flavour, and the 

effective masses rn& F m, + UF, which play a similar part to running masses, will 

all have a similar decrease. 

Once (3.2) is solved, similarly to the one flavour case, the quark contribution to the 

equation of state will be obtained from 

CO = &u,d,,,... 3 .!i- &[I,- f ‘WI 

Pq = &u,d ,,,... 3 I,? &fr[&=% - ‘$$$$I 

(3.34 

(3.3b) 
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nq = ,=g,,..8r & 
If electrons must be included to maintain charge neutrality, their contribution to 

the equation of state will be 

4 
ce = 4x1 

4 
k 

pe = G 

3 
PC - 

ne = 3*2 

(3.4a) 

(3.4b) 

(3.4c) 

b. Conversion of neutron matter to two flavour quark matter 

Let us first study the case of neutron matter undergoing a phase transition to 

quark matter. Weak interactions do not have time to settle and charge neutrality 

simply reads 

Hence, 

Pu = P (3.6~) 

and 

pd = 
[2’/‘ji2 + (1 - 22/3)m$r]‘f2 if n 2 m = m, 3 md 

P otherwise 
(3.66) 

One sees that & iS greater or eqUa1 t0 pu, so uii pairs will be created rather than da 

pairs, i.e. in (3.2), L=u. Note that quantities will now be plotted not as a function 

of ,uU or pd but ss a function of the Gibbs energy per particle G G ,&=u,d,,,... r&,/no = 

,k + %d. 

Equation (3.2)may be solved numerically. Its solution as a function of G is quite 

similar to that of the one flavour case in figure lb, so we do not show it. Again the 

quark plasma will undergo a first order mass phase transition. In order to compute 
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the Gibbs energy per particle at which it occurs, the pressure as a function of G is 

plotted in figure (3.8). The thermodynamically preferred state (i. e. G minimum 

for a given p) is p=O from G=O to G=1.575, and then p starts to increase abruptly. 

The phase transition takes place at this value of G = 1.575. In order to know at 

which density this corresponds, the baryon density has been depicted as a function 

of G in figure (3.b). One sees that when G = 1.575, the density is nl = 0.0085. 

In what precedes, all the quantities have been computed in unit of the quark 

mass, m, and indeed this is the only parameter of the two flavour model. It is in 

fact possible to find a lower bound for this parameter. First, nt should be greater 

or equal to the nuclear matter density, so we must have 

nf 2 nnuc.,,,.tt. = 1.28 10s Mev3/m3 which implies m 2 532. Mev (3.7) 

The fact that we obtain 532.Mev as a lower bound for the constituent mass -usually 

thought to be of order 340.M~ is~an indication that our model is reasonable but 

crude. In what follows, we are going to see that it is possible to get an upper bound 

for m as well. 

c. Three flavour quark matter in chemical equilibrium 

Once the transition is accomplished, the quarks will establish chemical equilib- 

rium via the weak interactions 

d+--+u+e+pe 

s-u+e+De 

s+u-d+u 

The weak interactions (3.8a-c) imply that 

fid = P. = ,J 
PY i- Pr = cc 

(3.8~1) 

(3.8b) 

(3.8~) 

(3.9) 
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and overall charge neutrality requires that 

- ;,t, - n.) = 0 

Thus there is only one independent chemical potential, which we choose as being 

cc. One sees that py = /.L - p. is smaller or equal to pu, so again ug pairs will be 

created preferably. 

Note that in the three flavour case there are two parameters: m 3 m, and r z 

m,/m.. Since m, and m, are constituent masses, we expect that r M 500.1340. = 

1.47. 

Equations (3.2) for Uf and (3.10) for say, p,, can be solved simultaneously 

numerically for various values of JL, with the input (3.9). Once this is done, the 

thermodynamical quantities (pressure, energy density, baryon density, electronic 

density) can be computed by using (3.3a-c) and (3.4a-c).~ The behaviour of theses 

various functions is rather similar to that of two flavour quark matter -so we only 

show p(c) in figure (4) for r = 1.47. Th is d oes not mean that there will be another 

phase transition, once u and d quarks start to appear with a given density, they 

will be gradually depleted, the pressure needs not vary abruptly. 

In figure (4), the curve terminates suddenly. This corresponds to a value of G 

equals to 1.7, which we will denote by G,.. Up to G,,, the equation of state is 

very non-perturbative. On the other side, one may compute the approximate value 

of the Gibbs energy per particle Gprri at which quark matter should start to be 

describable with a perturbative equation of state. ~Let us suppose that this happens 

when the coupling constant equals one 3. We can get a rough approximation of 

G prrl by solving 

a*bZ) = (33 - 2 ii 1x+/A) = ’ 

aWe could just u well take a half or any other value smaller than me, thii would increase the 
upper bound we are looking for. So taking o-. = 1 is more restrictive 
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This is the expression of the running coupling constant in the case of quarks of mass 

much smaller than cc. 

If we take A to be 200. Mev for instance and N, = 3, the solution of (3.11) is 

p=40l.Mev. So, if r = 1.47, the following constraint should be satisfied 

G moz I Gpcrt = 3 x 401./m which implies m 5 708.~1fev (3.12) 

This upper bound is compatible with the lower bound (3.7). It corresponds to a 

transition density ni - 2.4nnuc.m.tt.. 

d. Some preliminary results for dense stellar objects 

Now that we have an equation of state (expressed in function of m) and bounds 

for m, we may try to apply it to stellar objects. First one may wonder if strange 

stars could exist. As explained in Farhi Kz Jaffe’31 , quark matter containing strange 

quarks -in addition to u and d quarks- is more stable than ordinary nuclear matter 

if 

G(u, 4 ~&CI I Gue.mott. = Q3O.Mev (3.13a) 

But one also needs to require that u-d quark matter be less favorable, energetically 

speaking, than ordinary nuclear matter, i.e. 

G(u,~),xT 2 G,,,.,,w. = 934.Mev 

These equations imply 

(3.13b) 

if r = 1.47 or 1.47 - lo%, m < 593. and m > 593. 

if r = 1.47 + lo%, m < 596. and m > 593. (3.14) 

So it does not seem very likely that strange matter would be stable and that strange 
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stars would exist within this model, while it is possible if one uses the M.I.T. bag 

approach -see A.Olinto in the same issue of this review. 

Next, one may want to compute mass-radius relations for quark core stars and 

pure quark stars and investigate their stability. This work is currently in progress. 

However, the stiffer the equation of state, the higher the maximum mass allowed 

for a star is. So a glance at figure (4) permits to conclude that our maximum mass 

should be higher than those obtained in the M.I.T. bag approach”). 

4. CONCLUSION 

The methods of relativistic quantum many-body theory have been applied to the 

study of quark matter interacting through phenomenological potentials at zero tem- 

perature. It was shown that if the chosen confining potential has a scalar Lorentz 

structure and is colour-independent, the quark plasma undergoes a first order mass 

transition from a massive collective bound state at low density to a gas of parti- 

cles of decreasing mass at high density. Moreover all the computed quantities are 

independent of the shape of the interquark potential, because of the way screening 

through pair creation has been implemented. This one-flavour model was then gen- 

eralized to several flavours and applied to the hadron-quark phase transition in a 

cold plasma. It was shown that the u-d constituent quark mass had to be in the 

interval [532.Mev,704.Mev] -which is reasonable for such a simple model. Thus a 

satisfying description for quark matter seems to emerge from this approach. 

However, some reservations must be made. First, instantaneous interquark po- 

tentials were used. At low-medium densities where quarks are massive, this should 

be a reasonable approximation. (Instantaneous potentials have been used widely 

to study nuclear matter in exactly the same range of densities we are interested in, 
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namely at nuclear density -1.28 10” Met?- and slightly higher.) But at high densi- 

ties where quarks become more and more relativistic, such an approach should not 

be used. As a matter of fact, we saw in section 2, that our equation of state is 

only computable for low-medium densities; at high densities, it should be matched 

with a perturbative equation of state. (Note that other phenomenological equations 

of state such as the M.I.T. one, cannot be used either -for other reasons- at high 

densities.) 

Second, the confining potential may have a more complicated structure than just 

scalar and colour-independent. ( In reference 87, we studied the possibility that the 

confining potential has both a scalar and a vector component. It might be actually 

interesting to develop the interquark confining potential with Gell-Mann matrices 

BS can be done in the Clifford algebra with Dirac matrices- and study other more 

complex colour structures.) 

Thirdly and finally, it is’not completely obvious which kind of mass must be used 

for m. Looking at Eq. (2.1) for instance, one might favour a current mass - indeed 

this is what Olives’) did for example - because one would expect that, as a result 

of interactions with other quarks, this current mass is increased to the value of a 

constituent mass. However, it is not so: the Hartree field contribution to the quark 

mass is negative and mH/m -+ 1 as p decreases se can be seen in figure 1.b. Also it 

may be shown that if one introduces non-zero temperatures in a gap equation such 

as (2.19), at a given density, ma/m decreases as the temperature increases*‘), so 

that, in order that chirality be restored at high density or temperature, the choice 

of a constituent mass for m is most reasonable. In addition, since potential models 

of quarkonia and hadrons are fitted with constituent masses, and that our approach 

makes use of such potentials, it is also more self-consistent to use constituent masses 

(this is what was done as well for instance in reference 45 .) 
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It is also easy to imagine some possible improvement to this model. First Fock 

exchange terms are known to be negligible in the equation of state for nuclear matter 

and small for neutron matter. Since these terms are dependent of the shape of the 

potential, it would be interesting to check if they are also negligible for our quark 

matter model. This point is studied in reference 38. 

Second, in the Hartree approximation, one replaces the interaction of a number 

of quarks on a given quark, by an exterior field acting on this quark. As a con- 

sequence of this, we get a collective bound state at low densities and not a soup 

of colour singlets (hadrons). In order to get , if not baryons, at least mesons, an 

approximation of a different type should be used. 

Third, one can think of other ways of computing screening lengths in a self- 

consistent way. For instance, one can assume some value for the screening length, 

study the plasma oscillations of the quark gas, then from this compute the associated 

Debye shielding length and see if it agrees with the value initially assumed for the 

screening length -if not iterate. It would be interesting to compare this approach 

with the one followed here. 

Fourth and last, this equation of state could be generalized to non-zero temper- 

ature. Non-virtual gluons could be considered as modes propagating in the quark 

plasma -in much the same way that a solid emits phonons- and their energy spec- 

trum obtained by computing the plasma oscillations. 

In summary, the equation of state presented here should be easy to improve. 

In addition, its use in astrophysics does not present any difficulty. In our mind, 

the main interest of this approach is that it allows one to utilize a new source of 

information: data from quarkonia spectroscopy, and perhaps in the future, results 

on the interquark potential obtained in lattice gauge theory simulations. 
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FIGURE CAPTIONS 

Fig. la Plot of the effective mass aa a function of the chemical potential for dif- 
ferent values of constant positive T. A phase transition occurs if I+ 2 2.5. 

Fig. lb Plot of the effective mass aa a function of the chemical potential. Due to 
screening, it terminates more abruptly than in figure la. A glance at Fig. 2a 
allows one to determine which states are not mechanically stable (dotted line) 
and which states are physically accessible (dashed line). 

Fig. 2a Plot of the pressure es a function of the chemical potential. The transition 
is seen to be first order and is associated to a change of mass (dashed-dotted 
line in figure lb). For curve designation, see figure lb. 

Fig. 2b Plot of the energy per particle as a function of particle density. The plasma 
is in a collective bound state at low densities. 

Fig. 3a Plot of the pressure as a function of the Gibbs energy per particle, for 
several quark flavours. The transition occurs for G=1.575m. 

Fig. Sb Plot of the density of quarks as a function of the~Gibbs energy per particle, 
for several quark flavours. The transition takes place when nt = 0.0085~~~. 

Fig. 4 Plot of the pressure versus energy density for u,d,s quarks and electrons 
in chemical equilibrium, with m=595.mev and r=1,47 (dashed-dotted curve). 
For comparison, the M.I.T. bag equation (continuous curve) of state is shown 
(with”) m=O, m,=ZOO.Mev, (r,=O.17) aa well as the equation of state (dotted 
curve) for non-interacting massless u-d quarks and s quarks of mass 280 Mev 
(which are the effective masses corresponding to G=G,,). 

22 



--------- 

I 
‘:. 

Y;, : 
‘;. 

8’. I 
‘.,‘. 

‘. +l ‘I 
l . . . 

l . 
-. 

--m-e 
-. 

+ 

--.,A 

I I I I 



I I I I 

%. 
*. 

--. 
~--.---.-------.-.-.~ 4 

i 

.---.a--, 
a. 

9. / 
l . 

i 
l ../ 

/ 

i 
i 
i 
i 
i 
i 
i 
I I I I I 

9 co 
d 2 



I I 

---- 
---------- 

.--_ ---_ 
---_ --s. 

--*-,--w 
- a< 



I I 

I I 

0 00 
,: d x 

0 
0 
d 

al 

s 
d 

iz 
6 

% 
c 

5 
d 

i 
d 

0 



-I , ( I 1 , , I,,,,,,,,,,,,, 

I I I I I,, I, ( , , I,, , , I, ( , , 

r- 

. . 

. 

II,,,,,,, 1 

’ 03 
-’ 

-CD 
L 

\: 
-d 

L 

-CUE 
-0 

-a2 

-Ul 
If I I I I, I I I. 

8 % 
B 

0 0 
9 9 9 ; 

I 

u/d 
I’ 

b 



I”‘1 “‘( “‘I”‘] 11 11 I IT 

I I I I I I I ,,I, I II,,, I,, , 

N 0 s 
6 6 

g g 
9 

s! 2 0 
9 

‘3, 
a, -’ 

UY L 

d ,’ 

E -“1\ -c3 

-cq 

-l? 
I 

E “J/U 



-. 
. 
. 

. 
. 
. 
. 
. 
. 
. 

. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 

. 
. 
. 
. 
. 

. 
. 
. 
. 
. 

* 
-0 
‘;; 
0, 

P 
-0 0 
zz 

a 
0 
G 


